BRI

g
4
€

DTG FILE CORY

ADA10504:

Py

-

Unclassified . -' : '

SECURITY CLABAIFICATION OF THIS FAGE (When Date Entered) . _
READ INSTRUCTIONS

REPORT DOCU.\ENTATION,PAGE BEFORE COMPLETING FORM

. REPORTYT NUMBER 2. BOVT ACCTESSION NOJJ 3. RECIPILNT'S CATALOG NUMBER

AD- Alo 9 A7

4. TITLE (and.Subtitle) .. 3. TYPE OF REPORT & PERIQU CCVENTD

Crn. the Power of Probabilistic Choice in Technical Report

synchronous Parallel Computations §. PERFORMING ORG. REPORT NUMBER

TR-30-81

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(»)

John H. Reif N0O0014~-80-C-0674,

AR R

16, PROGRAM ELEMENT, PROIECT, TASK

9. "ERFORMING ORGANIZATION NAME AND ADDRESS
AREA & WORK UNIT NUMHERS

Harvard University
Cambridge, MA 02138

1), CONTROLLING OFFICE NAME AND ADDRESS S ~ |12, REPORT DATE
Office of Naval Research November, 1981
800 North Quincy.Street '3, NUMBER OF PAGES
Arlington, VA 22217 27

4 MONITORING AGENCY NAME A& ADORESS(I! different from Controlling Oliice) | 1S, SECURITY CLASS. (of thie report)

same as above

19a. DECLASSIFICATION/DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of thie Report)

LAl

unlimited

unlimited g,

18. SUPPLEMENTARY NOTES

19, KEY WORDS (Continue on teverse elde il necessary and identily by block number)

Probabilistic aléorithm, randomized algorithm, nonuniform,
parallel algorithm, parallel speedup, perfect matching, matrix
multiplication, polynomial irreducibility, computational complexity.

20, ABSTRACT (Continue an reveree aide il necesnary and tdentifly dy block numbdes)

see Reverse

DD ,"ON™ 1473 toition OF 1 HOV 6315 OUSOLETE

V JAN 73 Unclassified ﬁ//:n;: : sf
S/N 0102-014 AANY |

by sata Knlerou)
SECURITY CLASHIFICATION OF THIS PAGE (khen Data Kniere

e -

s A L L g

Unclassified J
SALUMITY CLASSIFICAYION OF THIS PAGE/When Data linterad) 1

20.

SUMMARY

This paper introduces probabilistic cﬁoice to synchronous
parallel machine models; in pSrticular parallel RAMs. The power of
probabilistic choice in parallel computations is illustrated by O(log n)
‘time algorithms for connectivity and recognizing bipartite graphs and
O(iog n)2 time algorithms for testing if a graph has a perfect matching,
testing in timé;pkn) irreducibility of polynomials
over finite fields, We characterize the computational complexity of time,
space, and processor bounded probabilistic parallel RAMs in terms of
the computational complexity of probabilistic sequential RAMs. We show
that parallelism uniformly speeds up time bounded probabilistic, seqﬁential
RAM computations by nearly a quadratic factor. We aiso show that

probabilistic choice can be eliminated from parallel computations by

introducing nonuniformity.

e

SECURITY CLASSIFICATION OF THIS PAGE ¥hen Dals Enteted)

- A2 s FRANARANAA 5 R SR A Mt e) ST PR T T T L

et vy r——— -

1'@;?

ON THE POWER OF PROBABILISTIC CHOICE
IN SYNCHRONOUS PARALLEL COMPUTATIONS

John H. Reif

- TR-30-81
i
i
i
t
L]
\
e ;
‘ |
_ - L |

ON THE POWER OF PROBABILISTIC CHOICE
IN SYNCHRONOUS PARALLEL COMPUTATIONS

by

John H. Reif

Aiken Computation Laboratory
Division of Applied Science
Harvard University
Cambridye, Mass.

November, 1981

*This work was supported in part by the National Science Foundation Grant
NSF-MCS579-21024 and the Office of Naval Research Contract N00014-80-C-0674.

e

TR o ;RN

.'.““3‘.-5 -

-

.ol -

| soeary \) |

\

~.

\t;§ This paper introdugpsﬁprobabilistic choice to synchronous

parallel machine mo@pf;a in particular parallel RAMs. The power of
probabilistic cheice in parallel computations is illustrated by O(log n)
time algorithms for connectivity and recognizing bipartite graphs and
O(log nfél time algorithms for teiting if a graph has a perfect matching,
testing in time O(n) irreducibility of polynomials

over finite fields. We characterize the computational complexity of time,
space, and processor bounded probabilistic¢ parallel RAMs in terms -of

the computational complexity of probabilistic sequential RAMs. We show
that parallelism uniformly speeds up time bounded probabilistic, sequential
RAM computations by nearly a quadratic factor. We also show that
probabilistic choice can be eliminated from parallel computations by

.

introducing nonuniformityr\\

\

\

e rm——— s ———— s e o

S

1. INTRODUCTION

Probabiligtie choice is the use of randomly chosen moves in an otherwise
deterministic computation given a fixed input. The introduction of probabi-
listic choice in sequential eomputations leads to considerable improvement to
the computational complexity of various number theoretic problems [Berlekamp,
701, [Rabin, 74], [Solovay and Strassen, 77}, ([Adleman, Manders, and Miller,
751, [Rabin, 80), [2ippel, 79] to combinatorial problems on graphs and
matroids [Lovasz, 80)], to testing polynomial identities [Schwartz, 80), and
testing program equivalence [Ibarra and Moran, 80].

Recently, [Rabin, 80], [Lehman and Rabin, 80], [Francez and Rodeh, 80},
[{keif and Spirakis, 81 and 82) have utilized probabilistic choice in
synchronisation algorithms for asynchronous multiprocesses systems.

This paper investigates the use of probabilistic choice in synchronous
parallel machines. We present a pair of simulation results (Theorems 4.1
and 4.2) which relate probabilistic sequential and probabilistic parallel
computations on RAMs. By parallel simulation of previously known pfobabilistic
sequential algorithms [Aleliunas, et al., 79], our Theorem 4.1 immediately
yields as corollaries the fastest known parallel algorithms for a variety
of combinatorial problems such as an 0(log n) time test if there exists a path
between two vertices of a undirected graph and an O(log n) time test if .
graph is bipartite. Both these probabilistic parallel algorithms use
o(nalog n) processors. Previously the fastest known parallel algorithm
for these problems required 0(logzn) [(Csanky, 76].

We give Ofllog n)2 time probabilistic P-RAM algorithms for testing if
a graph of n vertices has a perfect matching, and an 0(n) time

test if a polynomial of degree O0(n) has a

g

—— . ——— ——

root over GF(pn). (Also, recently [Reischuk, 81) has shown that a
probabilistic parallel RAM can sort in time C(log n) with O(n)
Processors.)

We have an interesting theoretical result (Theorem 5) for speeding
up a log~cost (unit-cost, respectively) probabilistic sequential RAM

computation of time T(n), by simulation on a probabilistic parallel RAM

in log-cost time O(T(n)llzlog T(n)) (in unit-cost time O(T(n)(log T(n))

log(T(n)I(n)))l/’: respectively, where 1(n) is the maximum integer
operated upon the simulated unit-cost probabilistic RAM). Previously,
[Dymond, 80) proved a quadratic speedup of deterministic multitape Turing
machines; however he considered the simulation of neither prohabilistic
machines nor RAMs.

[Adleman, 78] has previously proved that probabilistic choice can be
eliminated in sequential computations if there is no error of acceptance.
Theorem 6 of Section 6 proves that probabilistic choice can be eliminated
from probabilistic parallel RAMs with both errors of acceptance and errors of
rejection by introducing nonuniformity, with some increase of time and
processor bounds which may be traded off. This implies there exists non-
uniform deterministic parallel RAMs which can in unit-cost time O(log n)
test if a graph of n vertices is connected, and in time O(log n)2 test
if a graph of n vertices has a perfect matching, and in time 0(n)

test if a polynomial of degree O(n) has 2 root in GF (pn).

2. DEFINITIONS OF PROBABILISTIC MACHINES

2.1 Abstract Machine Types

s =+ raree——

Before describing our probabilistic parallel machines, it is useful to

define probabilistic (and also deterministic and nondeterministic) machine

types abstractly, without reference to the particular details of operation

of the machines.

Let M be a fixed machine. A oonfiguration of M is a finite string

I over a fixed finite alphabet describiny the current state and storage

contents of M. Let be the set of configurations of M. Let & €

be the set of accepting configurations of M. Let I be the finite input

alphcbet of M. Given an input string w€ I*, let :I:o(w) €. be the

corresponding initial confiyuration of M. Let < S XS Dbe the next

move relation for M; for eack I€S, NEXT(I) = {I'|IF I'} is the set of

possible configurations derived from 1 by a single move of M., (We assume

there is no next move from an accepting configuration.) In a nondetemmintistic

machine, any I'€ REXT(I) »nay be chosen nondeterministically. 1In a

probabilistic machine, each I' € NEXT(I) is chosen with equal probability,

indapendently of previous and succesding choices. In a determintistic machine

M. |NEXT(I)|€1 for all IE€ S,

Given a fixed input string WwE€LI*, a computation sequence of M is a

maximal length seguence of configurations IO'Il"" such that I -Io(w)

0

and Ii-l - Ii for i=1,2,... . The computation sequence is accepting if

it is finite and the last configuration is accepting. In a deterministic or

nondeterministic machine, M accepts w iff there exists an accepting

computation sequence from Io (W). In a probabilistic machine, M aoccepts w

PR AT

g e .

SR WV PREARDLVE ¥ o3 50 W e Ty -

iff Prob(COMP(w) is accepting) # 1/2, where COMP(w) 4is a random
computation sequence from Io (W) (generated by random next moves as defined

above) . Let the language accepted by M be L(M) = {wW€I*|M accepts w}.

2.2 Error Restricted Probabilistic Machines

Let M be a probabilistic machine which accepts language L(M). Let
the acceptance error €,(n) and the rejection error €p(n) be the minimum
functions such that for all n#20, wGEn,

(1) if wEL(M) then
Prob{COMP (w) is accepting} € € (R)
(i1) If w€L(M) then

Prob{COMP (W) is not accepting} € ep(n).

Note that by definition eA(n) €1/2 and eR(n) <1/2.
For deterministic or nondeterministic machines M, M' let MmM' if
L(M) =L{M'), Por two probabilistic machines M, M', let MmsM' have both
the: same error of acceptance and the same error of rejection.
Let M be a BP-probabilistic machine if there exists a constant
£<1/2 guch that for all n#0, €>max(ea(n) ,ER(n)) . Thus a BP-probabilistic
machine has a constant upper bound, which is less than 1/2, on errors of
acceptance and rejection.
Let M be a R-probabilistic machine if there exists a constant
€<1/2 such that for all n>0, €.> eR(n) , and M never has an accepting

computation on any input string WwWE€I%-L(M).

-6-

2,3 Probabilistic Segquential Machines

A nondeterministic Turing machine may be made a probadilistic Turing
machine by allowing next moves to be chosen randomly with equal probability,
as described in Sec. 2.1. See [Simon, 75) for a discussion of probabilistic
Turing machines with unrestricted errors and see [Adleman, 78) for some
results for R-probabilistic Turing machines. [Bennett and Gill, 81]
discuss these lnq'various other classes of probabilistic Turing machines.

Our principal sequential machine model is the probabilistic Random
Access Machine (RAM), which is defined here similarly to [Aho, Hopcroft and
Ullman, 74], except we allow the RAM probabilistic choice. A probabilistic
RAM consists of

(1) an infinite sequence of memory locations MyoMyoeee each of which

are indexed by and contain a nonnegative integer
(2) a fixed set of regiasters R each of which contains a nonnegative
integer
(3) a probabilistic finite state control which allows the following
operations:
(a) for any registers rl.tz€R, load (or read) the contents of r,
into (or from, respectively) the contents of global memory

location m,, where i is the current contents of register Lge

1'
(b) for any registers rl,rz,r3€ R, apply an addition, subtraction,
multiplication, or division operation on the contents of

registers ¥y10¥s and load the result into register r,.

{(Note: we round noninteger rationals to the next lower integer. Also, we

substitute 0 for the result of a subtraction which is negutive.)

o

PP IOBO YT NTEPR P2 YR BN~y 22
'1 .
<

A unit cost RAM is charged 1 step for each of the above operations; a
log-cost RAM is charged Mog(x+2)1 steps for each of the above operations
which are on integers of size x.

We assume & binary input alphabet {0,1}. Given an input string
w€ {0,1}*, each memory location m_a initially contains the i-th bit of
w for 1€i< |w|, m contains 2, and all othar memory locations and
registers are initially 0. The memory location mo,....mn are read-only,
and cannot be loaded into. Also, we assume the finitg control has
distinguished tnitial and acoepting states. A configuration is accepting
if the machine is in the accepting state. The probabilistic RAN aocepts
input w 4if with probability > 1/2 a random computation seguence is

accepting. The probabilistic RAM has timeé bound T(n) (space bound S(n),

integer bound I(n)) if on all inputs of length n and accepting

computation sequences, the machine takes € T(n) steps (usez € S(n) space,

operates on integers €< I(n), respectively). Note that we have defined steps

differently for unit-cost and log-cost RAMs. Furthermore, & log-cost RAM
(unit-cost RAM, respectively) is charged log(x+2) (1, respectively) units
of space for each noninput memory location and register utilized in an
accepting computation, where x 1is the largest integer stored in that

memory location or register.

2.4 Probabilistic Parallel RAMs

Our principle parallel machine model is the Parallel Random Access
Machine (P-RAM), similar to that defined in [Fortune and Wyllie, 78] and
[Wyllie, 79). However, we allow these machines probabilistic choice.
Initially, given an input string w€ {0,1}*, a probabilistic P-RAM consists

of a single probabilistic RAM initialized as defined in 2.3, with an

additional operation: fork which allows the original RAM to create a new
“"clone" RAM sharing the same memory, with copies of the original RAM's
registers with the same contents, with an identical finite state controi,
and initialized at some given state. Any new RAMs may also create new RAMs
by the fork operations. All these RAMs operate synchronously with the
original RAM. Furthermore, their probabilistic choices are assumed to be
independent. RAMs are allowed to simultaneously read the same memory
location. However, if two distinct RAMs simultaneously load into the same
memory contents, then the entire computation of the P-RAM fai.s. If on a
particular computation sequence the original RAM enters its accept state
and there have been no such simultaneocus memory load conflicts then this
computation sequence is considered to be accepting. The probabilistic
P-RAM accepts an input string w€ {0,1}* if with probability > 1/2 a
random computation sequence is accepting. (See 2.2 for definitions of
errors of acceptance and rejection.) The probabilistic P-RAM has time
bound T(n) (space bound s(n), integer bound 1I(n), processor bound P(n))
if on all inputs of length n and accepting computation sequences, the
machine taken € T(n) steps, (uses ¥ S(n) space, operates on integers

€ I(n), uses € P(n) processors, respectively). Ncte that space and time
are charged in units depending on whether the machine is unit-cost or

log~-cost as defined in 2.3.

B ks e ———- & ot s+ e e

3. SOME FAST PROBABILISTIC PARALLEL ALGORITHMS

This section describes some time efficient algorithms for probabilistic
P-RAMs which we easily derive by parallelizing known probabilistic
sequential algorithms. (Section 4 gives a uniform method for parallelizing
any probabilistic sequential algorithm.) All the algorithms described here
are R-probabilistic: with rejection error <1/2 (and no errors of acceptance)

if the probabilistic trials are made twice.

THEOREM 3.1. There are unit-cost R-probabilistic P-RRMs with time bound
O(log n) and processor bound 0 (n>1og n),which given a graph G with n
vertices,

(a) can test if G has a path between two given vertices, and

(b) can also test if G is bipartite.

Proof. [Aleliuneas, et &al., 79] give for these problems R-probabi-
listic sequential algorithms which can be implemented on a probabilistic
RAM in O0(l) space (using integers size X n2 for representing edges) and
O(n3) time. Our probabilistic parallel algorithms are derived immediately

by applying Theorem 4.1. o

Note that the fastest known deterministic P-RAM algorithm for testing

connectivity requires O(log n)2 time and O(ns) processors [Csanky, 76].

THEOREM 3.2. A unit-cost R-probabilistic P-RAM with time bound
0(log m? and proceesor bound O(n) can test if a graph of n vertices

has a perfect matching.

R RS AT L VN PR AN

L e — e

i i

-10-

Proof. Let G= (V,E) be a simple graph with vertices Vv={1,...,n}. 1
Lovasz, B80) gives a probabilistic sequential algorithm which chooses an 1
N=no(l) and constructs a symmetric n Xn matrix B=Bij where for 1<i,j<n

(a) Bij is a random element of {1,...,N} if i< Iand (i,§) €E. ' {
(b) B, =-Bji if i>3 and (i,3)€E.
(c) Bij==0 otherwise.
If the determinant of B is not O then G has a perfect matching.
If the determinate of B is 0, then for N sufficiently large, G
has a perfect matching with probability < 1/2. The parallel matrix
inversion algorithm of [Csanky, 76] can be used to compute the determinant

in time O(log n)2 and O(n5) on a P-~RAM,. o

-11-

THEOREM 3.3. A unit-cost R-probabilistic P-RaM with o(n + (log(nm))?)
time bound and O(n+m) processor bound can test if a polynomial £ (x)
of degree m has a root in GrF(p"), where p <8 a fixed prime.

Proof. We parallelize the probabilistic algorithm of [Rabin, 80)
(which generalized and proved validity for a previous algorithm of
[Berlekamp, 70] for GF(p)). (This algorithm can be implemented
on a unit-cost probabilistic sequential RAM in time O(nzm)). First,
compute £, (x) = GCD (£ (x) ,xpn-l- 1). If £,(x)=1 then f(x) has no roots
over GF(pn). Otherwise, choose a random 6 € ﬂo,l,...,pn—l} and ~ompute
fd(x)==GCD(fl(x),(x+6)(pn-l)/2). Let dl' d6 be the degrees of polynomials

fl(x), f(S (x) respectively. 1If O<d6<d then £(x) has a root in

1
GF(pn) (in this case f£(x) has factor fé(x) if 24 €4, and factor

1

fl(X)/fG(x) if 2d6>'d1), and otherwise £(x) is irreducible in GF(pn)
with probability = 1/2. The required polynomial GCD computations can be done
by a unit-cost P-RAM 0(log(nm))2 time and O(n+m) processors by using the
shuffle-exchange network of [Stone, 71] to compute the convolutions
required for the polynomial GCD algorithm of [Aho, Hopcroft, and Ullman, 74].
The exponentiations can be computed in O(n) parallel time by repeated
exponentiation. o

(Fote that the fastest known deterministic sequential algorithms
[Adleman, 80] and [Adleman and Odlyzko, 81]) for testing
if a polynomial of degree n has a root over GF(pn)

require time O(log n)log(log(log n))). These algorithms be speed-up by

our Theorem 5 to 0(log n)l/2 log(log(log(n)))+1

parallel time on a
deterministic P-RAM, but the resulting parallel algorithms remain very

s.ow in comparison to those provided by Theorems 3.3.

- ree—— ———

-12~

THEOREM 3.4. A unit-coet R-probabilistic P-RAM with time bound
O(log n) and processor bound O(nz/log n) givem nXxn integer matrices

A, B, C can test A°*B¥C.

Proof. Choose a random column vector x€ {-l,l}n and test

A(Bx) ¥ Cx. This test can be done by a probabilistic P-RAM within time
0(log n) and processor bound o(nz/log n) by forming n/logn binary
trees of processors, each of size 2n and depth 0(log n), and pipelining
the required dot products. [Freivalds, 79]) shows that if A*B#¥C then

Prob{a(Bx) =Ccx} 2 1/2. o

Note that the naive algorithm for testing A*B¥ C in time 0O(log n)

on a deterministic P~RAM requires at 1l: ast n3/log n processors.

-13-

4. SIMULATION RESULTS BETWEEN PROBABILISTIC RAMs AND PRORABILIS'C P -RAMs

[Fortune and Wyllie, 78] and [Wyllie, 79] characterize the computa-
tional complexity of their deterministic P-RAMs in terms of the complexity
cf deterministic complexity classes. It is the aim of this section to do
the same for our probabilistic P-RAMs. Our simulation methods a‘re similar,
except for the use of probabilistic choice to insure the probability of

errors of acceptance and rejection are preserved.

4.1 Simulation of a Probabilistic RAM by a Probabilistic P-RAM

THEOREM 4.1. Let M be a probabilisiic RAM with constructible time
bound T(n) #n, 8pace bound S(n)#log n, and integer bound I(n). Then
there i8 a probabilistic P-RAM M' s8uch that MmsM' (see 2.2 for definition
of the equivéZence relation m); if M 18 wnit-cost then M' has unit-cost

S(n)

time bound 0(S(n)log I(n) + log T(n)), and processor bound O(I(n) T(n));

if M {18 log-cost then M' has log-cost time bound 0(S(n) + 1oy 'I'(n))2

and processor bound 0(aS®

T(n)).

(Note: Theorem 4.1 gives a speed-up for unit-cost RAMs only if
S(njlog I(n) <T(n); Theorem 5.1 provides a uniform quadratic speed-up even
if s(n)=T(n).)

Proof. Fix some input string w€ I" and let Io(w) be the initial
configuration of M. Let J be the set of configurations of M with
space S(n). Let p=|#|(T(n) +1). Let each I€S and each t,
0€t<T(n) be encoded as a distinct integer i=<I,t>, where 1€i<p.

We can assume that the encoding and its decoding are computed in O(log p)

steps on a P-RAM.

-14-

Our gimulating probabilistic P-RAM M' will begin by a series of fork

operations yielding RAMs Ml,....Mp. Each RAM M,, 1<i€<p, has a local

i

i and an associated global memory location NEx'ri which is

initialized as follows: suppose i=<I,t> then if I has any immediate

register r

successor I', let M, randomly choose some such I' and load <I',t+D>

i
into NEX'I‘i and othexrwise if I has no successors then let Mi load i

into NEXT,. After this initialization, each M,, for 1<i<p,

i i
synchronously:
(1) loads the contents of NEXT 3 into register x, where 4§ 1is the
contents of NEXTi, and
(2) then loads NEX'ri with the contents of .
This is repeated [log p! times. We can assume <Io (W) ,0>=1 and M, is
the original RAM of M'. We let Ml' enter the accepting state (so M!'

accepts) if NEXT., ever contains integer <I,t> where I is an accepting

1
configuration of M.

If M' accepts on a particular computation, then there must be a
O is initialized

t‘
t-1'
to <Il,1>,...,<1t,t> where Io(w)-Io, SRR is an accepting

sequence: of memory locations NEX'I‘<I o> .,NEXT<I
0'

computation sequence of M, and t&T(n). Thus the memory essentially forms
a path from NEX'I‘<I°'0> to NEXT(It, N decreases by a factor of 1/2. Thus
after rlog p1 iterations, NEX‘I‘<I°' o contains <It,f>.

Suppose IO'I is an execution seguence of M, derived from a

1,00.
particular sequence of probabilistic choices p. Suppose also that the RAMs
of M' make a sequence of probabilistic choices p' such that M<I o

tl
initially loads NEM(It.Q with <It+1't+]> for t=0,1,...,T(n) - 1.

Then M errors on acceptance (rejection, respectively) of & when making

bound is p=0(I(n)

«15-

probabilistic choices p iff M' aerrors on acceptance (rejection,
respectively) of w when making probabilistic choices p'. Since p and
pt are chosen randomly, it follows that MmNM', If M is unit-cost

|J’| < I(n)s‘n); so if M' is also considered to be unit-cost the time

and space bound is O(log p) =0(S(n)leg I(n) +1log T(n)) and the processor

SMain)). 1f M is log-cost | & | g 228 gSn),

so 1f M' is also considered to be log-cost its time bound is O0(log p)2 =

S(n)

0(s(n) + log T(n))2 and procegsoy bound is p=0(4 T(n)). a

4.2 Simulation of a Probabilistic P-RAM by Probabilistic RAM

THEOREM 4.2. Let M be a probabilistic P-RAM with time bound T(n),
space bound S(n), and processor bound P(n). Then there is a probabiZiatial
RAM M' with apace‘bound 0(S(n) +P(n)) such that MmM'. Furthermore, if
M is unit-cost thenm M' has wnit-cost “ime bound O(T(n)P(n)); and if M
t8 log-cost then M' has log-cost time bound O(T(n) P(n)log P(n)).

Proof. The simulating probabilistic RAM will have only 5 registers;
the first register of M' will store an integer p giving the total
number of RAMs currently being executed, and the second register of M'
will store an integer designating the RAM currently being simulated; the
other 3 registers of M' will be used for arithmetic operations and
indirect addressing of memory locations. Suppose each RAM of M has r
registers. The registers of the simulated RAMS of M will be stored in a
special block of memory locations, which is increased by r+1 on every
fork operation. The simulation of M' by M is straightfonvud; on each
move of M, N' must simulate a move by each of the currently active RAMs

of M. This requires O(P(n)) steps if M' is unit-cost, and O(P(n)log P(n))

S A b v e T e

T, Pl
[———-

=16~

steps if M' is log-cost. By storing two copies of the memory of M, it

is easy to detect simultaneous load conflicts., M' is allowed to enter its
accepting state just when the original RAM of M enters its accepting sta.e
and there are no simultaneous load conflicts, Since the probabilistic
choices taken by the individual probabilistic RAMs are assume& to be inde-~
pendent, and the simulating probabilistic RAM M' takes independent
probabilistic choices, the probability of errors of acceptance and rejection

of M and M' are identical, so MmM', o

§ e B e T e L N e et e e e

e ALY A S T R R DTS N WY YT IO N A M M et e

A3 A (e st |

-17-

S. PARALLEL SPEED-UP OF PROBABILISTIC RAMs

THEOREN 5.1. lLet N bé a probabilistic NN with oonstruotible time
bound T(n) #n and integer bowi” 1(n). Then there is a probabilistic

r P-RANM N' suoh that MmN' and if M {e unit-cost then N' has wnit-ooet
Y2 ond if N 18 log-cost then
: M' has log-cost time bound O(T(n)]'/zloq T(n)).

time bound O(T(n) (log T(n))log(T(n)I(n)))

Proof. Let w€ {0,1}* Dbe on input string of length n.

There is 1 constant c#1 such that M has at most ¢ choicec for

next moves at each stap. Thus the choices can be represented by a
sequence p= Por++**Ppny-1 “here £ €{1,...,cl. The parallel simulation

of M by N' begins by probabilistically choosing po....,p,r (n)=1 in
O(log T(n)) parallel time, and storing these choices in distinct memory
locations.

The fundamental idea (previously used 1n. {Hopcroft, Paul, and Valiant,
75] and [Dymond, 30) for specA-up of deterministic Turing machines) is to

partition the T(n) stis intdo consecutiva intervals of length L,

1SLET(n) to be decarmined below.

let q be the runber of states in the finite controle of N . Suppose
in the following that M is unit-cort. Then M can read from and load
into at most 3L registers and memory locations within a time interval A.
of length L. Furth:rmore, we can ancode by a pysitive integer
€ r=q(T(n)I(n))3¥ the current state and the contents and addresses of the
registers and memory locutions read from (or locaded into) during A.
(If M is log~cost, M can read from and load into at most 3L bitr of
registers and memory locations with a time interval 4 of length L. Thus
we can encode this by A positive integer €r, where r=g(T (n)‘)u‘ in the

case N 1is log-cost.)

U ey eri— s . . - R A rmATARE 1N et g AR gt W . - C e e e
s - <

P——

st e, g2

PPRvI

R T o s A e s BB AT i e

[N TR S P

p-

R i) b e B A A

VI A e

‘18-

Let H = [T(n)/LT - 2. For each t=0,L,2L,...,HL the nimﬁiatinq N'
constructs in global memory a table rm:crt which given a positive
integer i<r encoding a possible state of N and contents and addlruul
of all registers and memoxy locations to be read during time interval
b, = {t,t+1,...,t+L-1} PREDICT, (i) is a positive integer € r encoding

the contents and addresses of all rdginnu and memory locations to L

" loaded into during At using the predetermined choice sequence

pt’pt+1""'pt+h:i' However, let PREDICTt(i) =0 if this choice saquence
requires reading a register oxr memory location whose contents are not defined
by i, or if t‘hc contants of a register or memory location are provided by

i but are not read from. These tables can be constructed in parallel by

M' in time O(L+1log r).

T(n) disting_ailhed global memory locations of M' arxe used to store
the contents of the memory of M, Also, a special register is used to store
the state of the finite control of M. These are initialized as in the
initial corfiguration of M. The simulation of M by M' will then
proceed segquentially in H phases, each corresponding to a time intezval
At’ for t=0,L,2L,...,HL.

Suppose at the start of the phase corresponding to interval At‘ N'
is currently storing (as described above) the configuration It of N,
where 10'11'“"11: is the sejuence of configurations of M induced
from xo-IO {(w) by the choice sequence po.pl.....pt_l chosen by N' at

the start of the simulation. Then there is a unigque sequence of configura-

tions It' induced by the predetermined choice sequence

Tevrreoorleny

PerPeyr?* * 1Peara1’ Hence there is a unique it' 1€i<y, such that

PREDICT, (:lt) ¥0 and i, encodes contents of registers and memory locations

At e & A s g

}

-y -

-19-

conasistent with :t. mecrt (it) is encoded and is used to update the

memory of N' to store the configuration It. After the phase

+5°
associated with time interval Am‘. N' simulates N step by step sequentially for
t= (H+l)L, (H41)L+l,...,T(n). Let the original RAN of N' enter the
accepting state if the simulated M does. Since the choice sequence

poo....p,r (n)=1 is chosen randomly by N', it induces a random computation

sequence of N from Io (W), so NMNN',

In the case N is unit-cost, we let NM' be unit-cost. The unit-
cost time for initialization and computation of the PREDICT tables is
O(L+log r) = O(L log(T(n)I(n))). The unit-cost time for each phase is
O(loglog r) = O(log(L log(T(n)I(n)))) since encoding and decoding of
slemants of the PREDICT tables is done in prallel. There are < T(n)/L
phases. Thus the total unit-cost time is

O(L log(T(n)I(n))) + (T{(n)/L)O(log(L log(T(n)I(n)))) + L

= 0(T(n) (log T(n))log(T(r)T(m)) /3,
for

L = (T(n) (log T(n))/log(T(n)2(n))) /2,

In the case N is log-cost, we similarly let N' be log-cost. To
allow for O(loglog r) parallel log-cost time access of the PREDICT tables,
the log r bits of each element of a PREDECT table must be stored in
distict contiguous memory locations, instead of a single memory location.
The log-cost tiwme for initialisation and computation of the PREDICT tables is
0(l+log r) + O(L log T(n)). The log-cost time for each phase is

O(loglog r) = O(log(L log T(n)))). Thus the total log-cost time is

O(L log(T(n))) + (T(n)/L)log(L log T(n))) + L = 0(T(n) ?10g T(n))

for

L = 'I‘(n)m.' o

s

—

RS e L

-20-

e

6. ELININATION OF PROBABILISTIC CHOICE IN PARALLEL COMPUTATIONS

Let N Dbe a (uniform) probabilistic P-MAM with time bound T(n) and
processor bound P(n). Let Z(n) be the maximum number of probabilistic
choices made by all the RANs of N on any input of length n. (Note that
E(n) €T(n)P(n)). Let ¢, (n) +€p(n) be the acceptance and rejection error
functions for N, and let €(n) -mx(cA(n).cR(n)). Also, let
A(n) = (1+2n)/logLl/ (4€(n) (1-€(n)))). We assume €(n) <1/2 so A(n) is finite.

The following theorem states that we can eliminate the probabilistic

choice in N by introducing nommniformity with advice bound A(n): i.e.,
we allow the nonuniform P-RAN to have in the initial configuration for each
input length n20, a distinguished sequence of A(n) memory locations

each initialized to either 0 or 1 and fixed for all inputs of length n.

THEOREM 6. For any T(n), 1€1(n) €A(n), there i8 a deterministic O
nomuniform P~RAN N which accepts L(N) with time bound O(T(n)T(n) +
log(A(n)/T(n))), processor bound O(P(n)A(n)/T(n)), and advice bound
0{A(n)2(n)).

Note: Thus to eliminate probabilistic choice we have a trade-off
between an increase in time bounds and an increase in processor bounds.
However, if €(n) dJdecreases exponentially, then neither the time hound nor
the processor bound ars asymptotically increased.

Theorem 6 will be proved as follows: f£irst we show that we can
eliminate probabilistic choice from N if €(n) is sufficiently mn{
then we show how to make €(n) sufficiently small.

We can astume a constant cP1 such that N has € & ™ choices of

moves next from any configuration. PFix some input length n20. A parallel

-2l-

ohotos sequence o is of the form 0. iPyreetPpipy .y VHOTE pic{l.....c"“’}
for 1i=0,1,...,T(n)=1l. lat "Nn) be all choice sequences of length T(n).
Given an input w€ {0,1)", & choice sequence in 8y induces a computation
sequence of N. let Ry, (w)-(DEI\Nn)f(NGL(u) and N has an accepting
computation sequence on input w and choice sequence p) or (wRLIN) and
N has a nonaccepting computation sequence on input w and choice sequence
”l}. ‘

LENMA 6.1. *If e(n) <2°°, then there ts a deterministic nomaiform
P-RAM § which accepts L(N) with time bownd O(T(n)), processor bownd
P(n) and advice bound 0(Z(n)).

Proof. It suffices to show (*):
(*) if ¢€(n) < 2™" then there exists some choice sequence o*ﬁt\r (n) such -~

X n
that for all w€ {0,1}", p'en.“m (w).

Our proof is by contradiction (and thus is not constructive). For
each °€“'r(n) lat £(p) = |{w€ {0.1}n|p€lx”m W} and let r-\R,Nn)L

Suppose (*) does not hold, so "> 2(p) for all pE!\“n). Hence

"> T ot
pe"r(n)

- % (x/€(n))

= 1/¢(n)

> 2%, a contradiction o

LEOA 6.2. For any T(n), 1€T(n) <A(n), there is a prodadilistic
P-RAN N' Vhich aooepts L(N) with acoeptancs and rejection errore ¢, (n),
cp(n) where max(ey(n),€3(n)) <2™®, and time bound O(T(n)T(n) +log(A(n)/Tin)))
and processor bound O(T(n)A(n)/T(n)).

—

-22-

Proof., Let w€10,1}" be the input string, for some n20. Our
probabilistic P-RAM M' will simulate M on input w a total of A(n)
times; these simulations will be done by M (n)/T(n)7 groups of P(n)
probabilistic RAMs, with each group simulating M T(n) times. M' |is
allowed to enter an accepting configuration only if M enters an
accepting configuration on at least A(n)/2 of the A(n) trials. (This
technique of determining the corsensus of a series of trials is due to
[Bennett and Gill, 81].i The count of successful trials can be computed

in log(A(n)/T(n)) parallel time. The acceptance error of M' is

A(n)) .
gp(n) = (>‘(in))s.*(xa)l(l-e:(n)))\(n)-l
i=A(n)/2
< (‘IE:(n)(l-€(n))))\(n)/2 by bounds of [Chernoff, 52] also given

in [Feller, 57]

< 27" for given A(n) > 2n/log(l/(4€(n) (1-€(n)))).

Also we can similarly show the error of rejection eé(n)< 2—n. Hence

max(eiln),eé(n))< 2R as claimed. D

Theorem 6 follows immediately by applying to Lemma 1 the probabilistic

P-RAM M' derived by Lemma 6.2.

By applying Theorem 6 to Theorems 3.1-3, we have:

COROLLARY 6.1. There exists unit-coet nonuniform determinigtic P-RAMs
with time bound 0(log n), processor and advice bound 0(n4log n), which
given a graph G with n vertices, can test (a) whether G has a path
between two given vertices and can also test (b) whether G 18 not

bipartite.

— e

USRI

s e i ¢ ey v ae An e ke (T 4 A st b o e W4 et ey e ————

-23=

COROLLARY 6.2. There exists a unit-cost nomuniform deterministie
P-RAM with time bound O(log n)z, processor and advice bound 0 (1) which

can test if a graph of n vertices has a perfect matching.

COROLLARY 6. 3. There exists wnit-cost nomuniform deter-
ministic P-RAMs with time bound 0O(n) » processor and advice bound

o(nz) whioh can test:

gtven a polynomial of degree o(n), does it have a root in

GF(p")?

AT N e S et

o e

et b e

vt v ———— = e T IR, e A e p——————— ran 3 SSes b e o

-24-

7. CONCLUSION

This paper has primarily considered the power of probabilistic choice
for parallel RAMs. Theorems 3.2-5 also hold for fixed connection parallel
networks with probabilistic processors. Theorems 4.1 and 4.2 can be
extended to similar simulation results for other probabilistic parallel
machines, such as the hardware modification machines (HMMs) of [Cook, 80]
augmented with probabilistic choice (see [Reif, 8l])). Alsc Theorem 4
N generalizes to other probabilistic parallel machines such as HMMs and

circuits with probabilistic choice.

0 ACKNOWLEDGMENTS

The author was informed by Larry Russo of the consensus technique
previously used by [Bennet and Gill, 80) for decreasing errors of
probabilistic choice. Paul Spirakis gave helpful comments on a reading
a preliminary draft of this paper. Renate D'Arcangelo is sincerely

thanked for an excellent typing of this paper.

i

L e amnrs = = u e

-

N R Ty

-25-

REFERENCES

Adleman, L., "Two theorems on random polynomial time," Proceedings of the
19th IEEE Symposium on the Foundations of Computer Science, Ann Arbor,
MI, 1978, pp. 75-83.

Adleman, L., "On distinguishing prime numbers from composite numbers," i
Annual Symposium of Foundations of Computer Science, 1980. '

Adleman, L. and K. Manders, "Reducibility, randomness and intractability,"
Proceedings of the 9th ACM Symposium on the Theory of Computing, 1977,
pp. 151-153.

Adleman, L., Manders, K., and G, Miller, "On taking roots in finite fields,"
IEEE Symposium on the Foundations of Computer Science, 1977, pp. 175-178.

Adleman, L. and Odlyzko, A., "Irreducibility testing and factorization of
polynomials,” 22nd Annual Symposium on Foundations of Computer Science,
1981, pp. 409-420.

Aho, A.V., J.E. Hopcroft, and J.D. Ullman, The Design and Analysis of
Computer Algorithms, Addison-Wesley Pub. Comp., Reading, Mass. , 1974, pp.303-310.

Aleliunas, R., R.M. Karp, R.H., Lipton, L. Lovasz and C. Rackoff, "Random
walks, universal traversal sequences, an¢ complexity of maze problems,"
Proc. 20th Annual Symposium on Foundatiors of Computer Science, 1979,
pPp. 218-223,

Angluin, D., "Local and global properties in networks of processors," l2th
Arnual Symposium on Theory of Computing, Los Angeles, California, April
1980, pp. 82-93,

Barzdin, A.M., "On computability by probabilistic machines," Dokl. Akad.
Nauk SSSR, 189 (1969), pp. 699-702, = Soviet Math. Dokl., 10 (1969),
pPp. 1464-1467.

Bennett, C.H. and Gill, 7J., "Relative to a random oracle A, PA#NPA#coNPA
with probability 1," SIAM J. Comput., vol. 10, No. 1 (Feb. 1981),
pPp. 96-113.

Berlekamp, E.R., "Factoring polynomials over large finite fields," Math,
Comp. 24, (1970), pp. 713-735.

Chandra, A.K., D.C. Kozen and L.J. Stockmeyer, "Alternation," J. ACM, 1981.

Cook, S.A., "Towards a complexity theory of uynchronous parallel computation,®
Presented at Internationales Symposium iiber Logik und Algorithmik 2zu '
Ehren von Professor Horst Specker, Zurich, Switzerland, February 1980. !

Csanky, L., "Fast parallel matrix inversion algorithms," SIAM J. Comput. 5,
(1976), pp. 618-623.

-26=

Chernoff, H., "A measure of asymptotic efficiency for tests of a hypothesis
based on the sum of observations," Amn. of Math. Stat., vol. 23, (1952),
pPp. 493-507.

Dymond, P.W., "Speedup of multi-tape Turing machines by synchronous
narallel machines," Technical Report, Dept. of EE and Computer Science,
Univ. of California, San Diego, California.

Dymond P., and S.A. Cook, "Hardware complexity and parallel computation,"
IEEE FOCS Conference, 1980.

Feller, ., An Introduciion to Probability Theory and ite Applications,
John Wiley, New York, 1957. :

Freivalds, R., "Fast Probabilistic Algorithms," 8th MFCS, 1979.

Fortune, S. and J. Wyllie, "Parallelism in random access machines," In

Proc. of the 10th ACM Symposium on Theory of Computation, 1978,
pp. 114-118.

Francez, N. and Rodeh, "A distributed data type implemented by a probabilistic
communication scheme," 21st Annual Symposium on Foundations of Computer
Science, Syracuse, New York, Oct. 1980, pp. 373-379.

Gill, J., “"Complexity of probabilistic Turing machines," SIAM J. of Computing,
6(4), 675-695 (1977).,

Goldschlager, L., "A unified appraoch to models of synchronous parallel

machines," In Proc. 10th Annual ACM Symposium on the Theory of Computing,
San Diego, California, 89-94 (1978).

v irschberg, D.C., "Parallel algorithms for the transitive closure and the

connected components problems," In Proc. 8th Annual ACM Symposium on
the Theory of Computing, 55-57 (1976).

Hopcroft, J.E., and Karp, R.M., "An ns/2 algorithm for maximum matchings
in bipartite graphs," SIAM J. Comp., vol. 2, No. 4, (Dec. 1973),

Hopcroft, J.E., W. Paul, and L. Valiant, "On time versus space and related .
problems," IEEE 16 SWAT, 1975.

Iberra, O.H., and S. Moran, “Probabilistic algorithms for deciding equi-
valence of straight-line programs," Computer Science Dept., University
Minnesota, Tech. Report 80-12. (March, 1980).

Lehman, D. and M. Rabin, "On the advantages of free choice: A symmetric
and fully distributed solution to the dining philosophers' problem,"

to appear in Bth ACM Symposium on Principles of Program Languages,
Jan. 1981,

»

e e A

-

R T TN

-27-

Lovasz, L., "On determinants, matchings, and random algorithms," to appear,
1980,

Rabin, M.O., "Probabilistic algorithms," Algorithms and Complexity, New
Directiones and Recent Results, edited by J. Traub, Academic Press,
1974.

Rabin, M.0., "Probabilistic algorithms in finite fields," SIAM J. Comp. 9,
No. 2 (May 1980), pp. 273-280.

Rabin, M.O., "N-process synchronization by a 4 loggN-valued ghared variable,"
21st Annual Symposium on Foundations of Computer Science, Syracuse,
New York, Oct. 1980, pp. 407-410.

Reif, J.H., "Symmetric complementation," Techinical Report TR-07-81, RAiken
Computation Laboratory, Harvard University, Oct. 1981,

Reif, J.H. and P. Spirakis, "Distributed algorittmg for synchronizing
interprocess communication within real time," 13th Annual ACM Symposium
on the Theory of Computing, Milwaukee, Wisconsin, 1981.

Reif, J.H. and P. Spirakis, "Urbounded speed variability in distributed
communication systems," 9th ACM Symposium on Principles of Programming
Languages, Albuguerque, New Mexico, Jan. 1982.

Reischuk, R,, "A fast probabilistic parallel sorting algorithm," 22nd Annual
Symposium on Foundations of Computer Science, Nashville, Tenn.,Oct.
1981.

Savitch, W., and M. Stimson, "Time random accegss machines with parallel
processing," J. ACM 26, 108-118 (1979).

Schwartz, J.T., "Fast probabilistic algorithms for verification of polynomial
identities," JACM 27, (4), pp. 701-717 (Oct. 1980).

Simon, J., "On some clentral problems in computational complexity,"
TR75-224, Dept. Comp. Science, Cornell Univ., Ithaca, NY, 1975.

Solovay, R. and Strassen, V., "A fast Monte-Carlo test for primality,"
SIAM J. of Computing 5, (1), pp. 84-85 (1977).

Stone, H.S., "Parallel processing with the perfect shuffle," Trans. on
Computers, C-20, (2), pp. 153-161 (Feb. 1971).

Valiant, L.G., "A scheme for fast parallel communication," Technical Report,
Computer Science Dept., Edinburg Univ. Edinburg, Scotland, July 1980.

Wyllie, J.C., "The complexity of parallel computations," Ph.D. Thesis and
TR-79-387, Dept. of Computer Science, Cornell University, 1979.

Yemini, Y., "Some theoretical aspects of position location problems," Proc.
of the 20th Annual Symposium on Foundations of Computer Science,
pp. 1-8 (1979).

Z2ippel, R., "Probabilistic algorithms for sparse polynomials," EUROSAM
Proceeding, 1979,

B et . it . s e = ¢ e et

